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The work involves the investigation of the conditions of occurrence of a thermal 
burst in an unloaded bearing with a pseudoplffstic liquid. It is shown that in 
a loaded bearing a local thermal burst is possible. 

The possibility of unbounded growth of dissipative heat release in the flow Of a liquid 
with strong nonlinear dependence of the viscosity on the temperature, hfndering the establish- 
ment of stready-state flow conditions, was apparently pointed out for the first time in [I-3]. 
Since then the realization of thermal bursts taking into account the dissipative heating and 
heat exchange with the environment has been investigated for many types of flow of liquids 
with different theological properties (see, e.g., [4-8]). 

Among the flows, in which the effects of internal heat release are particularly impor- 
tant, belong flows of thin layers of lubricant in various types of bearing [9]. These effects 
greatly change the parameters of such flows. In particular, increase of the maximum tempera- 
ture in the lubricant layer as a result of thermal burst above some limiting permissible 
value and also the decrease of the minimum thickness of the layer up to contact of the 
lubricated solid surfaces as a result of disastrous drop of viscosity caused by the heating 
may lead to early breakdown of bearings. 

Here we will examine the plane problem for a radial bearing of unbounded length. The 
steady-state equations of the conservation of energy and impulse in the approximation of a 
thin layer have the form 

0 (uT) = Z O=T + ~ \ - -~ -y]  ~ \ ay ] dx pc ~x Oy ~ 

Using the condition of adhesion and assuming that the thermal conductivity of the mate- 
rials of the shaft and of the bearing housing greatly exceeds %, we will represent the boundary 
conditions on the surface of the bearing (y = 0) and of the shaft (y = h) in the form 

T=To, u = O  (y=O); T=T~, u=U=~R(y=h) .  (2) 

In addition to that, below we will examine the problem in which the first condition in (2) is 
replaced by the equality to zero of the heat flow to the bearing (i.e., 3T/3y = 0 for y = h). 
The system with heat-insulated bearing simulates real systems fairly well [9]. 

Additionally to (2) we impose the ordinary condition of periodicity on all functions 
from the longitudinal coordinate x = Rq), replacing in our case the "initial" conditions [I0]. 

The dependence of viscosity on the temperature and slip velocity will be described by 
the formula 

= (11 ~ \--~I--~Y l e x p [ - - m ( T - - T O ] ,  (3) 

which is approximately correct for graded pseudoplastic (n < I) and dilatable (n > I) liquids; 
y is the characteristic slip velocity. To a Newtonian liquid corresponds n = I, K = ~i. For 
the sake of determinacy, the values of K and ~i are reduced to the shaft temperature TI. 

If the temperature gradients longitudinally and transversely are of the same Order of 
magnitude, we have 

0 (uT)/% OZT pcUhZ = Pe h Pe Uh (4) 
OC -a#-x . a y~ ~" z R R " = - - a -  " 

so that when the layer of lubricant is sufficiently thin, the term in the left-hand part of 
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the first equation (I) may be neglected; in this case, only the dependence of u and T on y 
is important. The opposite boundary case, when the number Bi = eh/%<< I (here, ~ is the 
effective heat transfer coefficient), so that the temperature may be considered to be approx- 
imately uniform, was examined [6, 7] in cOnnection with the problem of establishing steady- 
state Couette flows. The dependence of the temperature on the transverse coordinate may 
apparently be neglected under artificially impaired heat removal across the flow boundary, 
as occurred in the experiments [7]. However, it is not adequate to the situation in a bear- 
ing where, even if we neglect the heat removal by the lubricant itself, the heat is rapidly 
absorbed by the massive wall with high heat capacity and possibly also by the bearing hous- 
ing, where in the general case AT = TI -- To=/= 0 applies. 

With the thickness h of the lubricant layer depending on x, when dp/dx # 0 and the con- 
dition of periodicity must be imposed on p, the full solution of the problem (I)-(3) for a 
bearing encounters considerable difficulty even when the estimate (4) is used. Therefore, 
authors dealing with the hydrodynamic theory of lubrication either neglect the inhomogeneity 
of the temperature field altogether ("isothermal" approximation), or they adopt various sim- 
plifying, albeit not always justified, assumptions: they examine the "adiabatic" approxima- 
tion corresponding to neglecting the heat exchange with the walls, they neglect the effect 
of the pressure gradient on viscous energy dissipation, which corresponds to the assumption 
that the eccentricity of the bearing is relatively small, etc. (see, e.g., [9-11]). 

Here we will examine first an "unloaded" bearing with a lubricant layer of constant 
thickness, filled with a liquid with p from (3). In this case dp/dx = 0, so that from the 
second equation (I) follows: 

du M 
= C, C = - - ,  (5) dy 2~R 

dydU =C1/~(~-~K) 1/~exp m(T-T')n (6) 

Here, the term in the left-hand part of the first equation (I) for such a hearing vanishes 
identically. 

Using (5), (6) and introducing the dimensionless magnitudes 

U ~2--. mCI+I/nh2 f ~n--1 ~l/n 
0 = m.n ( T -  T , ) , .  ~ = --h-, 2n% ' t ' - - K - - )  ' (7 )  

we obtain from (1) and (2) the problem for the dimensionless temperature 

d~0 m 
- - + 2 ~ e ~  0 : O o = ,  AT(B=0);  0 : 0  (~=  1), (8) 

d~ z n 
whose equation coincides with the principal equation of the steady-state theory of thermal 
burst in a flat vessel when there is a chemical reaction [12]. The solution of the problem 
(8) has the form 

[ cha ]2, 
~ = e ~  r176 ch(~ V~oo h ch~- -  o) ~o = exp 0o, (9) 

and o (6, ~ o) is determined from the equation 

V~0ch ~ = c h  (8 V~0ch ~ -- ~). (10) 

The relationships (9) and (I0) are greatly simplified when the temperatures of the shaft 
and of the bearing housing are equal (~0 = l), where 

= ~ ch  ( 2 o ~  - -  ~) ch ~ -2" ( 1 1 ) 

For a bearing with heat-insulated housing we obtain instead of (9), (I0), or (II): 

= ~ ch (~'~) ch a-- 

The equations for o and o' have two real roots corresponding to steady-state regimes of 
flow only when ~ is smaller than some critical ~ = B,. For the solutions of (11) and (12), 
B* is equal to 1.330 and 0.665, respectively. The value of $, for Eq. (10) is a monotonically 
decreasing function of ~ illustrated in Fig. I. When B > ~*, a steady-state regime is 
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Fig. I. Dependence of the critical parameter ~, on the dimen- 
sionless boundary temperature ~o = exp0o. 

Fig. 2. Dependence of the roots ~ and o' (lower and upper 
branches of the curves, respectively) on B: I) (11); 2) (]2). 

imPossible: the heat transfer from the lubricant layer to the shaft and bearing is insuf- 
ficient for compensating the dissipative heating of the liquid, and there is a progressive 
increase of the temperature of the liquid and the corresponding decrease of its viscosity. 
When B < B,, there are two steady-state regimes, but stable is only the regime corresponding 
to the smaller root o(B) or 0'(8); the dependence of these roots on B is shown in Fig. 2. 

From the above relationships we can easily obtain the temperature and velocity fields 
for different values of the parameters: 

T = T , q -  n ln% u=U~dB/~dq, (13) 
0 0 

and a l so  an a l t e r n a t i v e  r e p r e s e n t a t i o n  f o r  the c o n s t a n t  
I 

?n-1 ~d~ . (14) 

0 

The c h a r a c t e r i s t i c  p r o f i l e s  0 and u/U c o r r e s p o n d i n g  to the  s o l u t i o n s  of  (11) and (12) a re  
p r e s e n t e d  in  F ig .  3. 

I t  can be shown t h a t  w i th  small  ~, the dependences (13) approach a s y m p t o t i c a l l y  those  
ob t a ine d  from the  l i n e a r i z e d  ( e O ~  1 + 0) problem (8) .  

We introduce the viscosity of the liquid at the surface of the shaft 
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Fig. 3. Characteristic profiles 0 (a) and u/U (b) for (II) 
and (12) (solid and hatched curves, respectively): I) B = 
~,; 2) ~ = B,/2. 
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Fig. 4. The dependence of B on 
the regime parameter In: ] and 
2 correspond to the solutions of 
(II) and (]2) respectively; the 
curves end at B = B*. 

= (15) 
~=I 

and examine the regimes corresponding to the specified torque M or the angular velocity of 
the shaft n. Calculating du/dy for ~ = l from (6) and using the formula for C in (5), the 
determination of ~2 in (7), and expression (15), we obtain the following condition of occur- 
rence of a thermal burst in the regime M = const: 

IM = mMZhZ ~ 8~2~. ( l 6 ) 
nk~t 

When this condition is fulfilled, the angular velocity increases indefinitely without attain- 
ing a steady-state value. For situations corresponding to the solutions of (II) and (]2), 
the right-hand part of (16) is equal to 140 and 35, respectively. 

In the regime n = const, formula (]4) must be used for C. The condition of occurrence 
of a thermal burst has the form 

I 

0 

When this condition is fulfilled, the moment inhibiting rotation of the shaft approaches 
zero unboundedly. We point out that in distinction to the conclusion of [6], a hydrodynamic 
thermal burst is possible even in this regime. For the solutions of (ll) and (12) the right- 
hand part of (17) is equal to ]7.2 and 4.3, respectively. 

If I M or I n are sufficiently small for a stable steady-state regime to exist, the values 
of B determining the temperature and velocity profiles are found from the equations 

and the functions f(l~) corresponding to (If) and (12) are shown in Fig. 4. 

Since B is an increasing function of I M or In, other conditions being equal, B de- 
creases with increasing exponent n in the rheological relationship (3). That means, in par- 
ticular, that in the lubricant layer of the pseudoplastic liquid the thermal burst occurs 
more quickly with increasing M or n than in a layer of Newtonian liquid, and even more so in 
the case of a dilatable liquid. This last has to be taken into account when new types of 
lubricant are being worked out. In fact, it is usually desirable to weaken maximally the 
temperature dependence of the viscosity of lubricating liquids; this is often attained by 
adding high-molecular compounds to them [13, 14]. However, such additives endow the liquid 
with pseudoplastic properties, i.e., decrease of the parameter m occurs simultaneously with 
the decrease of n. Therefore, it is imperative to watch that the positive effect attained 
by weakening the dependence of viscosity on the temperature is not eliminated by the nega- 
tive effect of strengthening its dependence on the slip velocity. 

We want to point out that all the results obtained above are also fully applicable to 
the analysis of the effect of inner dissipative heating on the flows in rotational viscosi- 
meters. 

569 



Let us now examine the flow in a loaded bearing with nonzero eccentricity, when h = 
h(x), dp/dx r 0, assuming for the sake of simplicity that the lubricating liquid is Newton- 
ian. In this case we have instead of (5) 

lu" @ 

and instead of Eq. (8) 

020 h dp 

(19 )  

- -  @ S (n) ee = O, S (n) = 2~ 2 (1 @ ~ n )  2, X = , ( 2 0 )  
Oh 2 C dx 

w h e r e  O, q ,  and  B 2 and  a l s o  t h e  b o u n d a r y  c o n d i t i o n s  f o r  (20)  a r e  d e t e r m i n e d ,  a s  b e f o r e ,  by  
E q s .  (7)  and  (8)  w i t h  n = l .  By s u b s t i t u t i n g  ~ = ( 2 x ) - ~ ( 1  + ~ q ) 2 ,  Eq.  (20)  ~ s  r e d u c e d  t o  
the standard form of the equations originating in the steady-state theory of thermal burst 
(ignition) in systems with chemical reactions [12]: 

020 k O0 
- -  + - -  - -  + 2~2e ~ = O, (21 ) 

0p ~ 0~ 
w h e r e  k = 1 / 2 .  T h i s  e q u a t i o n  p e r m i t s  a s o l u t i o n  i n  t h e  known f u n c t i o n s  f o r  k = 0 and  k = I ;  
for other values of k a numerical solution is apparently indispensable. We want to point 
out that if, instead of (3), the hyperbolic dependence of viscosity on temperature is used, 
then instead of (20) or (2]) we obtain the linear equation that was examined in [5]. 

Using the method of the qualitative theory of differential equations, we can show that 
if S(D) in the problem for Eq. (20) is replaced by the minimum Smi n or the maximum Smax value 
of this magnitude in the interval 0~h~1, then the corresponding solutions 0min and ema x 
will represent the lower or upper boundaries, respectively, for the true profile of e in the 
sense that for any q the following inequality is correct: 

Omi n (~) . ~  0 (~) ~ Omax (0). (22)  

(Physically this is perfectly obvious: increased dissipation in the flow with unchanged con- 
ditions on its boundaries leads to increased temperature at all points except boundary points.) 
The problems for %min and emax coincide with the one examined above, and in particular, there 
exist conditions when the second or both do not have a steady-state solution. Therefore the 
conclusion that a thermal burst may occur remains correct also when there is a longitudinal 
pressure gradient. 

Furthermore, it can be shown that for x > 0 and for z < --I the critical value ~, is a 
decreasing, and for --I < x < 0 an increasing function of N. Along the lubricant layer of 
a real radial bearing the values of C and dp/dx change substantially, as is well known [i0]. 
Therefore, when M or ~ increase, the conditions of occurrence of a thermal burst are ful- 
filled initially on limited sections along the circumference of the bearing, i.e., peculiar 
"thermal points" originate. Near these points the longitudinal temperature gradients 
abruptly increase, and in addition, in the general case the assumption that the temperature 
of the shaft and of the bearing housing is constant becomes unsuitable. In case the critical 
value is slightly exceeded, the heat released in sections of local thermal burst may be 
transferred not only transversely but also longitudinally, not leading to a substantial ex- 
pansion of the mentioned sections and to the realization of a "global" thermal burst for the 
bearing as a whole. Therefore, under such conditions there have to exist steady-state regimes 
of a different nature entailing a substantial nonuniformity of the temperature distribution 
along the lubricant layer and in the materials of the bearing housing, possibly also of the 
shaft. This last may be the cause of considerable thermal strains and stresses and conse- 
quently of buckling and various kinds of distortions upsetting the balanced state of the 
entire system and the normal functioning of the bearing. Therefore, no further comment is 
needed concerning the applied importance of the investigation of the problem of thermal 
bursts in bearings. 

NOTATION 

a, thermal diffusivity; C, integration constant in (5) and (19); c, specific heat; h, 
thickness of the lubricant layer; I, regime parameters in (16) and (17); K, constant of the 
rheological law; k, parameter of Eq. (21); M, torque; m, exponent of the temperature depen- 
dence of viscosity; n, index of the rheological law; p, pressure; R, radius of the bearing; 
S, function in (20); T, temperature; U, ~R; u, velocity; x, y, coordinates; ~, heat transfer 
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coefficient; ~, parameter of problem (8); y, characteristic value of the slip velocity; q, 
dimensionless transverse coordinate; 0, dimensionless temperature; • parameter in (20); %, 
thermal conductivity; D, viscosity; p, density; ~, independent variable in (21); o, o' 
parameters of the solution of problem (8); ~ = exp 0; ~, angular velocity of the shaft. Sub- 
scripts 0, I, to the surfaces of the neck and of the shaft, respectively; *, critical values 
of parameters. 
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